{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"nbsphinx": "hidden"
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"%config InlineBackend.figure_format = 'svg'\n",
"\n",
"import warnings \n",
"warnings.filterwarnings(\"ignore\") #ignore some matplotlib warnings\n",
"\n",
"import numpy as np\n",
"\n",
"from triqs.plot.mpl_interface import plt, oplot, oplotr, oploti\n",
"plt.rcParams[\"figure.figsize\"] = (6,5) # set default size for all figures"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Bethe-Salpeter Equation (BSE) on the Hubbard atom\n",
"\n",
"To show how `TPRF` can be used to solve Bethe-Salpeter equations we will study the simple case of the Hubbard atom, whoose Hamiltonian has the form\n",
"\n",
"$$\n",
"H = U n_{\\uparrow} n_{\\downarrow} .\n",
"$$\n",
"\n",
"For this simple system all two particle quantities, the bare susceptibility $\\chi_0$, the susceptibility $\\chi$, and the particle-hole vertex $\\Gamma$ are known analytically (https://arxiv.org/abs/1805.00989). Here we will only solve these equation in the (scalar) magnetic channel of the spin.\n",
"\n",
"However, note that the analytic Hubbard atom functions for the single-particle Green's function and two-particle susceptibility can be replaced with `triqs/cthyb` and a general (retared) impurity problem.\n",
"\n",
"First we setup some system parameters and analytic expressions for the static susceptibility."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"U = 1.0\n",
"beta = 10.0\n",
"nw = 2 # number of bosonic frequencies\n",
"nwf = 20 # number of fermionic frequencies\n",
"nwf_gf = 2 * nwf # number frequencies for the single particle gf\n",
"\n",
"Z = 2. + 2*np.exp(-beta * 0.5 * U)\n",
"m2 = 0.25 * (2 / Z)\n",
"chi_m_static = 2. * beta * m2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Single-particle Green's function $G_{\\sigma \\sigma'}(i\\omega_n)$\n",
"To construct the bare suceptibility we need the single particle Green's function $G_{\\sigma \\sigma'}(i\\omega_n)$. While this is diagonal in spin $\\sigma \\in \\{ \\uparrow, \\downarrow \\}$ we first get the diagonal component and then populate a block Green's function with the diagonal elements.\n",
"\n",
"Since the two-particle calculations are done in \"full\" orbital space we then map the block Green's function to a $2 \\times 2$ matrix valued Green's function, as one would have to do for, e.g., a `cthyb` calculation with diagonal hybridization function."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from triqs_tprf.hubbard_atom import single_particle_greens_function\n",
"g_iw = single_particle_greens_function(beta=beta, U=U, nw=nwf_gf)\n",
"\n",
"# make block gf of the scalar gf\n",
"from triqs.gf import BlockGf, Idx\n",
"from triqs_tprf.freq_conv import block_iw_AB_to_matrix_valued\n",
"G_iw_block = BlockGf(name_list=['up', 'dn'], block_list=[g_iw, g_iw])\n",
"G_iw = block_iw_AB_to_matrix_valued(G_iw_block)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"oploti(g_iw, label=r'Im[$G_{\\sigma,\\sigma}(i\\omega_n)$]')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Bare and full susceptibility $\\chi_0$ and $\\chi$\n",
"\n",
"The full susceptibility $\\chi$ is known analytically (or obtained from an impurity solver through the two-particle Green's function)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from triqs_tprf.hubbard_atom import chi_ph_magnetic\n",
"chi_m = chi_ph_magnetic(beta=beta, U=U, nw=nw, nwf=nwf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The bare susceptbilitiy $\\chi_0$ is constructed from the matrix valued single-particle Green's function $G_{\\sigma\\sigma'}(i\\omega_n)$, we also pass $\\chi$ in order to construct $\\chi_0$ with the same mesh size."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from triqs_tprf.chi_from_gg2 import chi0_from_gg2_PH\n",
"chi0_m = chi0_from_gg2_PH(G_iw, chi_m)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can plot $\\chi_0$ and $\\chi$"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def plot_chi(chi, label='', opt={}):\n",
" data = chi[Idx(1), :, :][0, 0, 0, 0].data\n",
"\n",
" plt.figure(figsize=(3.25*2, 3))\n",
" subp = [1, 2, 1]\n",
" \n",
" def plot_data(data, subp, label=None, opt={}):\n",
" plt.subplot(*subp); subp[-1] += 1\n",
" plt.imshow( data, **opt )\n",
" plt.title(label); plt.colorbar(); plt.axis('equal');\n",
"\n",
" plot_data(data.real, subp, label='Re[%s]' % label)\n",
" plot_data(data.imag, subp, label='Im[%s]' % label)\n",
" plt.tight_layout()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_chi(chi0_m, label=r'$\\chi_0$')"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_chi(chi_m, label=r'$\\chi$')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Bethe-Salpeter Equation (BSE) for $\\Gamma_m^{(PH)}$\n",
"\n",
"The particle-hole vertex can (approximately) be obtained by inverting the Bethe-Salpeter equation (BSE)\n",
"\n",
"$$\n",
"\\Gamma = \\chi_0^{-1} - \\chi^{-1}\n",
"$$\n",
"\n",
"Here each object has three frequency dependence $\\chi \\equiv \\chi(\\omega, \\nu, \\nu')$. \n",
"\n",
"Note that the equation is a matrix equation in the two fermionic frequencues $\\nu$ and $\\nu'$, whence the BSE is in principle an infinite matrix equation. Here we truncate this frequency in a **finite** frequency window, which is an approximation."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"from triqs_tprf.linalg import inverse_PH\n",
"gamma_m = inverse_PH(chi0_m) - inverse_PH(chi_m)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now plot the vertex that mainly has diagonal features"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_chi(gamma_m, label=r'$\\Gamma_m$', opt={})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analytic vertex $\\Gamma_m^{(PH)}$\n",
"\n",
"The vertex is known analytically for the Hubbard atom, so we can compare the result from the BSE calculation. (The deviations comes from the finite frequency window.)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"from triqs_tprf.hubbard_atom import gamma_ph_magnetic\n",
"gamma_m_anal = gamma_ph_magnetic(beta=beta, U=U, nw=nw, nwf=nwf)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_chi(gamma_m - gamma_m_anal, label=r'$\\Delta \\Gamma_m$')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## BSE frequency window convergence\n",
"\n",
"The helper function `triqs_tprf.analytic_hubbard_atom.analytic_hubbard_atom` performes the steps above for the Hubbard atom and returns an object with the collected result.\n",
"\n",
"With this we can study the convergence of the vertex $\\Gamma$ computed with the Bethe-Salpeter equation with respect to the fermionic frequency window size `nwf`."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from triqs_tprf.analytic_hubbard_atom import analytic_hubbard_atom\n",
"\n",
"nwf_vec = np.array([5, 10, 20, 40, 80, 160])\n",
"diff_vec = np.zeros_like(nwf_vec, dtype=np.float)\n",
"\n",
"for idx, nwf in enumerate(nwf_vec):\n",
" d = analytic_hubbard_atom(beta=2.0, U=5.0, nw=1, nwf=nwf, nwf_gf=2*nwf)\n",
" diff_vec[idx] = np.max(np.abs( d.gamma_m.data - d.gamma_m_num.data ))\n",
"\n",
"x = 1./nwf_vec\n",
"plt.plot(x, diff_vec, 'o-', alpha=0.75)\n",
"plt.xlabel(r'$1/n_{wf}$')\n",
"plt.ylabel(r'$\\max|\\Gamma_{ana} - \\Gamma_{num}|$')\n",
"plt.ylim([0, diff_vec.max()]); plt.xlim([0, x.max()]);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To improve on this linear convergence requires a better representation of the two-particle objects and a different approach to the Bethe-Salpeter equation."
]
}
],
"metadata": {
"celltoolbar": "Edit Metadata",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}